37,519 research outputs found

    Determinations of upper critical field in continuous Ginzburg-Landau model

    Full text link
    Novel procedures to determine the upper critical field Bc2B_{c2} have been proposed within a continuous Ginzburg-Landau model. Unlike conventional methods, where Bc2B_{c2} is obtained through the determination of the smallest eigenvalue of an appropriate eigen equation, the square of the magnetic field is treated as eigenvalue problems so that the upper critical field can be directly deduced. The calculated Bc2B_{c2} from the two procedures are consistent with each other and in reasonably good agreement with existing theories and experiments. The profile of the order parameter associated with Bc2B_{c2} is found to be Gaussian-like, further validating the methodology proposed. The convergences of the two procedures are also studied.Comment: Revtex4, 8 pages, 4 figures, references modified, figures and table embedde

    Magnetoasymmetric transport in a mesoscopic interferometer: From the weak to the strong coupling regime

    Get PDF
    The microreversibility principle implies that the conductance of a two-terminal Aharonov-Bohm interferometer is an even function of the applied magnetic flux. Away from linear response, however, this symmetry is not fulfilled and the conductance phase of the interferometer when a quantum dot is inserted in one of its arms can be a continuous function of the bias voltage. Such magnetoasymmetries have been investigated in related mesoscopic systems and arise as a consequence of the asymetric response of the internal potential of the conductor out of equilibrium. Here we discuss magnetoasymmetries in quantum-dot Aharonov-Bohm interferometers when strong electron-electron interactions are taken into account beyond the mean-field approach. We find that at very low temperatures the asymmetric element of the differential conductance shows an abrupt change for voltages around the Fermi level. At higher temperatures we recover a smooth variation of the magnetoasymmetry as a function of the bias. We illustrate our results with the aid of the electron occupation at the dot, demonstrating that its nonequilibrium component is an asymmetric function of the flux even to lowest order in voltage. We also calculate the magnetoasymmetry of the current-current correlations (the noise) and find that it is given, to a good extent, by the magnetoasymmetry of the weakly nonlinear conductance term. Therefore, both magnetoasymmetries (noise and conductance) are related to each other via a higher-order fluctuation-dissipation relation. This result appears to be true even in the low temperature regime, where Kondo physics and many-body effects dominate the transport properties.Comment: 17 pages, 9 figure

    The Gauge Hierarchy Problem and Higher Dimensional Gauge Theories

    Full text link
    We report on an attempt to solve the gauge hierarchy problem in the framework of higher dimensional gauge theories. Both classical Higgs mass and quadratically divergent quantum correction to the mass are argued to vanish. Hence the hierarchy problem in its original sense is solved. The remaining finite mass correction is shown to depend crucially on the choice of boundary condition for matter fields, and a way to fix it dynamically is presented. We also point out that on the simply-connected space S2S^2 even the finite mass correction vanishes.Comment: LaTeX2e. 12 pages, 3 Postscript figures; Added references, some comment

    Effects of lipids on the water sorption, glass transition and structural strength of carbohydrate-protein systems

    Get PDF
    peer-reviewedEncapsulant systems are gaining wide practical interest due to their functional and nutritional properties. This paper was focusing on understanding structural relaxations in that systems near glass transition temperature. Freeze-dried trehalose-whey protein isolate-sunflower oil systems with various ratios of the last were used as a carbohydrate-protein-lipid food model. The Guggenheim-Anderson-de Boer (GAB) water sorption relationship was used as a tool to model water sorption isotherms. The glass transition temperature was obtained by differential scanning calorimetry (DSC). Structural α-relaxation temperatures were measured by dynamical mechanical analyses (DMA), dielectric analysis (DEA) and combined to cover a broad range for strength assessment. The microstructure was characterized by optical light microscopy, confocal laser scanning microscopy and scanning electron microscopy. The C1 and C2 constants for Williams-Landel-Ferry (WLF) equation and structural strength parameter were calculated for each system. The effect of sunflower oil and water contents on strength of carbohydrate-protein system was analyzed. Strength shows decreasing with increasing of lipid concentration in the mixtures and more complex dependence on the water content in a system.This investigation was supported by the Food Institutional Research Measure (FIRM) project “Formulation and Design for Food Structure and Stability” funded by the Department of Agriculture, Food and Marine (11-F-001), coordinated by prof. Y.H. Roos, UCC, Ireland and by the Food Institutional Research Measure (FIRM) project “Developing the next generation of high protein spray dried dairy powders with enhanced hydration properties” (15-F-679) funded by the Department of Agriculture, Food and Marine, coordinated by Dr. Mark Auty, Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland

    Relativistic linear stability equations for the nonlinear Dirac equation in Bose-Einstein condensates

    Full text link
    We present relativistic linear stability equations (RLSE) for quasi-relativistic cold atoms in a honeycomb optical lattice. These equations are derived from first principles and provide a method for computing stabilities of arbitrary localized solutions of the nonlinear Dirac equation (NLDE), a relativistic generalization of the nonlinear Schr\"odinger equation. We present a variety of such localized solutions: skyrmions, solitons, vortices, and half-quantum vortices, and study their stabilities via the RLSE. When applied to a uniform background, our calculations reveal an experimentally observable effect in the form of Cherenkov radiation. Remarkably, the Berry phase from the bipartite structure of the honeycomb lattice induces a boson-fermion transmutation in the quasi-particle operator statistics.Comment: 6 pages, 3 figure

    Reversibility of Red blood Cell deformation

    Full text link
    The ability of cells to undergo reversible shape changes is often crucial to their survival. For Red Blood Cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of micrometer dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar "pearling instability".Comment: 4 pages, 3 figure

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure
    corecore